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Archetypes are de5ned as embeddings of minimal nets with
maximal symmetry. A simple geometrical construction is pro-
posed to construct the archetype associated with two-line-con-
nected graphs with more than one cycle and without loops and
a criterion is derived to check the embedding. The periodicity of
the archetype is equal to the cyclomatic number of the quotient
graph of the net, and the factor group of its space group with
respect to the normal subgroup of all translations is isomorphic
to the automorphism group of the quotient graph. Orthogonal
projections are considered to ensure the generation of periodic
structures with three-dimensional coordination polyhedra.
( 1999 Academic Press

INTRODUCTION

It was shown previously (1) that the framework of various
three-periodic structures mapped on isomorphic quotient
graphs could be obtained by orthogonal projection of the
embedding of a unique (up to isomorphism) n-periodic net
mapped on the same quotient graph. This embedding,
which was called the archetype, bore the property that the
factor group of its space group with respect to the normal
subgroup of all translations was isomorphic to the auto-
morphism group of the quotient graph and its periodicity
was equal to the cyclomatic number of this graph. Extensive
use of group theory, by way of the generators of the auto-
morphism group of the quotient graph, was then made to
derive the general form of the archetype. The method in-
volves fastidious calculations and moreover poses the ques-
tion of the generality of the existence of the archetype since
nontrivial symmetry is a fortuitous phenomenon. In this
paper, we rely exclusively on graph theory (2) to propose
a general algorithm leading to the archetype. A simple
criterion is derived which allows checking the embedding.
The paper is closed with examples illustrating the necessity
of further projection to satisfy three-dimensional coordina-
tion around the points of the embedding, thereby providing
1E-mail: jgeon@iq.ufrj.br.
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a physical interpretation for some of the projections in-
volved in obtaining the real structure from the archetype.

INTEGRAL EMBEDDING AND ARCHETYPES

In this section, we introduce integral embedding and
archetypes in the case of the graphite net. The next section
generalizes the results by applying graph-theoretical tools.
Consider the graph K(3)

2
represented in Fig. 1a. Any embed-

ding of a periodic net admitting this graph, as a quotient
graph, should display two-point lattices A and B of valence
3 and three line lattices mapped on the three edges AB. We
obtain a particularly simple embedding of such a net by
setting the line lattices equal to the three vectors (e

1
, e

2
, e

3
)

of an orthonormal basis of the three-dimensional Euclidian
space E3. This is indicated in Fig. 1a by orienting and
labeling the edges of the graph. Note that this is not
a labeled quotient graph as this was de"ned by Chung et al.
(4). The framework shown in Fig. 1b was generated accord-
ingly, by "rst placing a point of type A at the origin of E3

and then drawing from each point of type A or B sub-
sequently obtained three lines AB or BA, parallel or oppo-
site, respectively, to the basis vectors. The procedure must
clearly recur inde"nitely until an in"nite framework is for-
med. It is apparent that the net associated with this frame-
work is the two-periodic minimal net (3) associated with the
graph K(3)

2
. By construction of the embedding, both kinds of

points have integer coordinates; so we call it the integral
embedding of the minimal net.

We can choose the vectors a and b of E3 given below, as
basis vectors for the two-periodic lattice:

a"e
1
!e

2
,

b"e
2
!e

3
.

It is clear from Fig. 1b that the position vectors r (h, k) of
points of type A or B are given as written below, for any pair
(h, k) of integers:

r
A
(h, k)"ha#kb"he

1
#(k!h)e

2
!ke

3
,

r (h, k)"e #ha#kb"(h#1)e #(k!h)e !ke .

B 1 1 2 3
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FIG. 1. (a) Graph K(3)
2

with (b) the associated integral embedding, and
(c) the planar framework 63 obtained after projection along the direction
[111].
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Points of type A and points of type B belong to two
parallel planes. Indeed, where the summation is over the
index i (i"1, 2, 3) and x

i
represent the coordinates of

a point in E3, with n"0 for points of type A and n"1 for
points of type B, both satisfy the equation

+x
i
"n. [1]

Conversely, it is easily veri"ed that any point with integer
coordinates in these two planes belongs to the correspond-
ing point lattice.

Now, we wish to generate a two-dimensional, two-peri-
odic embedding for the same net; this can be realized by
projecting the integral embedding into the plane of any of
the point lattices, giving the planar framework 63 of the
graphite structure represented in Fig. 1c. The embedding is
the archetype associated with the graph K(3)

2
.

GRAPH-THEORETICAL ANALYSIS

Basic concepts of graph theory can be found in Harary
(2). Of special importance to this work, however, are the
concepts of cycle space and cocycle space, which have been
extended to the "eld of real numbers, so that we brie#y
recall their origin hereafter. De"nitions of net, embedding,
and quotient graph of a net are given in Beukemann and
Klee (3) and Chung et al. (4).

Let G be a connected graph with possibly loops and
multiple edges for which an orientation has been chosen.
A 0-chain and a l-chain of G are formal linear combinations
of vertices and edges, respectively, with real coe$cients. The
boundary and coboundary operators L and d are linear oper-
ators de"ned between these two spaces by the following
rules:

Le"v!u, if e"uv is edge oriented from vertex u to
vertex v.

du"+e
i
e
i
, where the sum is over the edges e

i
incident

with vertex u and e
i
"1 if e

i
is oriented outward from u and

e
i
"!1 otherwise.
The cycle space D is the kernel of the boundary operator

whereas the cocycle space * is the image space of the
coboundary operator.

x3D8Lx"0.
y3*8&w : y"dw, where x and y are 1-chains and w is

a 0-chain.
It can be proven that the two spaces D and * are com-

pletementary in the 1-chain space. The cyclomatic number
m(G), also called cycle rank (2), is the dimension of the cycle
space, i.e., the maximum number of independent cycles of G.
If G has p vertices and q edges, then m(G)"q!p#1. The
dimension of the cocycle space is thus equal to p!1, and
the coboundaries of all but one vertex can be used as a basis
of the cocycle space.

The 1-chain space can be given the structure of a Euclid-
ian space if we formally consider the set of edges Me

i
,

i"1,2, qN as 1-chains forming an orthonormal basis. This
basis is called hereafter the natural basis of the graph. It can
then be veri"ed that the cycle and cocycle spaces are ortho-
gonal.

Let us have another look at the graph K(3)
2

in Fig. 1a.
With two vertices and three edges, the cycle space is two-
dimensional and the cocycle space is one-dimensional. The
1-chains e

1
!e

2
and e

2
!e

3
are obviously independent

cycles and can be used as a basis for the cycle space. The
coboundary dA"e

1
#e

2
#e

3
is a basis vector of the co-

cycle space. Let us now identify the 1-chain space of this
graph and Euclidian space E3 that was used to draw the
integral embedding, by using the natural mapping:

e
i
Pe

i
, i"1, 2, 3.

Equation [1] then represents the equation of planes par-
allel to the cycle space, or orthogonal to the cocycle space.
These results are now generalized.

Although no restriction should forbid the presence of
vertices of degree 2 in the graph, these can always be
eliminated by contraction: we thus consider that G has



FIG. 2. Graph K(2)
1,3

for generation of the perovskite structure.
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minimal vertex degree 3. It is known therefore that, up to
isomorphism, there is a unique minimal net of periodicity
m(G) admiting G as its quotient graph (3). The integral
embedding of this net is constructed in Eq, the 1-chain
Euclidian space of G, by setting each line lattice equal to the
basis vector associated with the respective edge of G. We
can choose the origin of Eq at an arbitrary point of some
point lattice O. If c

i
(i"1,2,m(G)) are independent cycles

forming a basis of the cycle space of G, then any linear
combination C"+n

i
c
i
with integer coe$cients n

i
gives the

position of a point of point lattice O. These combinations
correspond naturally to closed walks in G. Conversely, any
1-chain of G with integer coe$cients, which is mapped to
zero by the boundary operator L, is clearly a closed walk in
G, i.e., a linear combination of the basis cycles c

i
.

Thus, point lattice O can be identi"ed to the set of points
of the cycle space that have integer coordinates. The
position vectors of the points of any point lattice M are
given by g

M
#C, where g

M
is a geodesic linking the

vertices O and M in the quotient graph. This reveals that the
integral embedding is limited to p m(G)-dimensional a$ne
subspaces parallel to the cycle space, thus being of in"nite
extension along the cycle space but of "nite extension
in orthogonal directions, along the cocycle space.
The archetype is obtained by projecting the integral
embedding along the cocycle space of graph G into its cycle
space.

Using the orthogonal projection to generate the arche-
type ensures obtaining the highest possible symmetry (the
aristotype). Indeed, a geometrical interpretation of the pro-
jection that maps to the vector null the coboundary dP, that
is, that maps to zero the outward sum of the edges adjacent
to point lattice P, is that is puts the points of P at the center
of their coordination sphere. However, if desired, it is always
possible to add some distortion to the embedding by projec-
ting some vectors of the cocycle basis in de"nite directions
of the cycle space. We consider below the example of the
perovskite structure.

Figure 2 shows the labeled graph K(2)
1,3

corresponding to
the octahedral skeleton of the perovskite CaTiO

3
. We "rst

de"ne matrix K whose columns give the coordinates of the
basis vectors of the cycle (c

i
, i"1, 2, 3) and cocycle (d

i
,

i"1, 2, 3) spaces in the natural basis:

(c
1
,2, d

3
)"(e

1
,2, e

6
) )K.

K"

1 0 0 !1 0 0
!1 0 0 !1 0 0

0 1 0 0 !1 0
0 !1 0 0 !1 0
0 0 1 0 0 !1
0 0 !1 0 0 !1

.

The product of K and its transpose gives the metric tensor
Z of the integral embedding:

Z"K5 )K"2 ) I
6
, where I

q
is the unit matrix of Eq.

It follows that the lattice of the integral embedding, and
consequently its projection in the cycle space along the
cocycle space, are cubic. We de"ne matrix ¹, describing the
projection in the cycle}cocycle basis

¹"A
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0 B .

The columns of matrix ¸ de"ned below give the coordi-
nates of the line lattices in the cubic cycle basis:

¸"¹ )K~1,

¸"A
0.5 !0.5 0 0 0 0
0 0 0.5 !0.5 0 0
0 0 0 0 0.5 !0.5B .

To introduce a tetragonal distortion in the perovskite
framework, we can project the three vectors of the cocycle
basis on the "rst basis vector of the cycle space, for example,

¹"A
1 0 0 0.04 0.02 0.02
0 1 0 0 0 0
0 0 1 0 0 0 B ,



FIG. 4. Typical cases of bad embedding: (a) projection on the cycle
space of the integral embedding for a graph with a loop and (b) integral
embedding for a graph with a bridge.
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¸"A
0.48 !0.52 !0.01 !0.01 !0.01 !0.01
0 0 0.5 !0.5 0 0
0 0 0 0 0.5 !0.5 B .

The relative coordinates of the four atoms, calculated
from matrix ¸, are given below; they indicate a shift of the
central atom Ti and its two ligands O

1
along the "rst axis:

O
1
: 0.49 0 0,

O
2
: 0 0.50 0,

O
3
: 0 0 0.50,

Ti: 0.01 0 0.

In some cases, only partial projection from the cocycle
space is required. For example, the graph P(2)

2
represented in

Fig. 3 corresponds to the quotient graph of the layers in the
structure of red mercuric iodide. All that is needed here is to
project the two-periodic, four-dimensional integral embed-
ding along one direction to generate a two-periodic, three-
dimensional structure. This can be done by projecting along
the coboundary vector dHg"e

1
#e

2
#e

3
#e

4
to create

tetrahedral coordination around the central atom.

LOOPS AND BRIDGES

The two critical graphs displayed in Figs. 4a and 4b are
representative of the embedding inconsistencies that arise
from the presence of loops and bridges in the quotient
graph. On one hand, we require, as a "rst criterion for
a good embedding, that the distance between any pair of
nonbonded points be strictly larger than the length of a line
(5). On the other hand, the di!erent bonds (lines) are re-
quired to have comparable lengths, which is meant, for the
time being, as a fuzzy criterion. In the case of the "rst graph,
Fig. 4a, the integral embedding does not meet the require-
ments because points A, which are not linked together, are
brought to a bonding length in the direction de"ned by the
loop. In the case of the second graph, Fig. 4b, the bridge is
orthogonal to both cycles of the graph, i.e., is orthogonal to
the cycle space and is therefore null in projection. Two
di!erent vertices are consequently superposed in projection,
which is not acceptable. We thus restrict the study of
FIG. 3. Graph P(2)
2

for generation of the red HgI
2

structure.
quotient graphs to graphs without loops and bridges,
i.e., to two-line-connected graphs without loops (2). Note
that the special graph with one vertex and an arbitrary
number of loops, although trivial, leads to acceptable solu-
tions.

By construction, the bonds in the integral embedding
have unit length. Now, in a graph without loops, any cycle
combines at least two edges, that is, two vectors of the
natural basis of the graph. Thus, the norm of any vector of
the lattice in Eq is the square root of an integer, at least equal
to 2, which means that the requirements for embedding the
integral embedding are ful"lled by the points of the same
point lattice.

Moreover, it is easily veri"ed that a geodesic between two
di!erent vertices A and B of the quotient graph G de"nes
the shortest distance between points of these two-point
lattices of the integral embedding. If the geodesic has length
n in G, the distance between the extremities of the corre-
sponding path in the integral embedding is the square root
of n, which is at least 2, when the point lattices are not
linked. We conclude that the integral embedding meets all
requirements for embedding whenever the quotient graph
does not have loops.



THREE-DIMENSIONAL PERIODIC NETS 433
A CRITERION FOR THE EMBEDDING
OF THE ARCHETYPE

We proceed to examine the properties of the projection of
the integral embedding on the cycle space Em(G) when the
quotient graph is two-line-connected without loops. Let us
"rst recall that the Voronoi cell V(x) of a lattice " at a vertex
x is the set of points of Em(G) that lie at least as close to x as
to any other point of " (6). The facet vectors f form the set
F of vectors joining x to another vertex of " whose Voronoi
cell shares a facet (an n-dimensional face) with V(x). If a is
the vector joining x to a point y of Em(G), the following test
determines whether y belongs to V(x) (6):

∀ f3F, 2a ) f4D f D2 [2]

In this relation, a ) f is the scalar product of the two vectors
and D f D is the norm of f.

We now show that any geodesic g of the quotient graph
satis"es relation [2] for any cycle f of G. Indeed, we can
write in the natural basis, with the summation running over
all edges of G:

g"+g
i
e
i

with g
i
3M!1, 0, 1N,

f"+n
i
e
i

where n
i
are integers,

2g ) f"2+g
i
) n

i
42+Dg

i
) n

i
D4+n2

i
"D f D.

The equality only occurs when the cycle f is the reunion of
g and another edge-disjoint geodesic. We observe also that
the scalar product of f with the projection T(g) of g on the
cycle space Em(G) is equal to the scalar product of f and g,
since f is a vector of the cycle space. We thus obtain the
result that two points of the projection separated by a path
that is mapped to a geodesic in the quotient graph belong to
the Voronoi cell associated with any of them.

Let then X and Y be two point lattices of the framework
obtained by the projection of the integral embedding on the
cycle space, and choose one point x of X. By de"nition of
V(x), the points y of Y which are inside or on a facet of the
Voronoi cell V(x) are at least as close to x as to any other
point of X. Thus, to see whether the projection meets the
"rst requirement for an acceptable embedding, we only need
to compare the distance between x and y, that is, the
projection of a geodesic of G from X to Y, with the lengths
of the bonds from x and y. It is clear that the points of
a same point lattice satisfy this requirement since the re-
spective distances have not changed after projection of the
integral embedding on the cycle space.

Let B be the matrix of the projection in the cycle}cocycle
basis. It is a diagonal matrix with &&1'' in the "rst m(G)
entries of the diagonal and &&0'' in the next (q!m(G)) entries.
The matrix of the projection in the natural basis is then

E"K )B )K~1

The squares of the lengths of the lines in the projection are
given by the diagonal entries of matrix E. The minimum
distance separating two points x and y of point lattices
X and Y, linked in G by the geodesic g, is then given by d (g),

(d (g))2"g5 )E ) g,

where g is the column vector and g5 its transpose row
vector giving the coordinates of the geodesic in the natural
basis.

A special case is that of quotient graphs which are com-
plete graphs, K

n
, or complete graphs with multiple edges,

K(.)
n

. With the exception of K
2
, these graphs are two-line-

connected without loops and thus have well-de"ned integral
embeddings. Moreover, the geodesics of the quotient graph
correspond to its edges. All requirements for embedding the
archetype de"ned by quotient graphs K(.)

n
are then satis"ed.

Since the q edges of G are equivalent, as is the case for any
transitive graph, their lengths d (e) in projection are equal
and the sum of their square is the trace of matrix E:

q ) (d(e))2"tr(E)"tr(B)"m (G).

In the general case, we can use the criterion that the
distance given by any geodesic d (g) must be greater than the
projection of the lines linked to the extremities of the
geodesic d (e):

d (g)'d (e). [3]

SPACE GROUPS

We now assume that all embedding requirements are
satis"ed and examine the q-dimensional space group ! of
the integral embedding. From the position vectors of the
points of the embedding, g

M
#C, as given above, it is clear

that the subgroup #(!) of all translations contained in !
corresponds exactly to the cycle vectors C. By de"nition, the
automorphisms of the graph G correspond to the permuta-
tions of the edges that preserve the adjacency relation (4).
These permutations map the corresponding permutations
of the vectors of the natural basis of G and thus generate an
isomorphic group of linear transformations of Eq. We shall
use the same notation for the automorphism of G and the
geometrical transformation in Eq. As has already been noted
for three-dimensional embeddings (1), it follows from the
de"nitions that the factor group !/#(!) of the space group
of the integral embedding with respect to the normal sub-
group of all translations is isomorphic to a subgroup of the
automorphism group Aut(G) of its quotient graph.



FIG. 5. Tangent cycles.

FIG. 6. Construction of a pair of tangent cycles from any vertex a of
a two-line-connected graph G with more than one cycle and without loops.
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Consider an automorphism A of Aut(G), which maps the
origin O and an arbitrary vertex M of G to vertices O@ and
M@, respectively. We write [A, g

O{
] for the isometry of Eq

with linear component A and translation component g
O{

,
which corresponds to a geodesic from O to O@ in G. We now
show that this isometry maps the points of point lattice
M to points of point lattice M@. By de"nition of the
isometry, we have

[A, g
O{

] ) g
M
"A ) g

M
#g

O{
,

where A ) g
M

represents the image by the automorphism A of
the geodesic g

M
in G; since A preserves the adjacency rela-

tion, this is a geodesic from O@ to M@. Adding the geodesic
g
O{

, which goes from O to O@, we obtain a walk from O to
M@, which is equal to the sum of a geodesic g

M{
from O to M@

and a cycle c of G, possibly null:

[A, g
O{

] ) g
M
"g

M{
#c.

The de"nition of the linear operator A ensures the map-
ping of the lines crossing at any point of M to the lines
crossing at the point of M@ to which this was mapped. This
shows that the isometry [A, g

O{
] maps the integral embed-

ding to itself and belongs to space group !. The factor group
!/#(!) and the automorphism group Aut(G) are thus
isomorphic and we have !"M[A, g

O{
#C]N, where A is any

automorphism of Aut(G) and C is any closed walk of G, as
de"ned above.

Consider now the m (G)-dimensional space group of the
archetype whose points are de"ned by B ) g

M
#C, where B is

the matrix of the projection, as above. It is clear that the
group of the translations of the archetype contains all the
cycle vectors C of the cycle space. Since a translation of the
embedding also maps an automorphism of the quotient
graph, there will be no other translation if there is no
automorphism of G, other than the identity, which leaves all
the cycles "xed.

Let A be such an automorphism; it realizes a circular
permutation of the vertices and edges along any cycle. We
now show that A is necessarily the identity of Aut(G) if the
graph G is two-line-connected and contains more than one
cycle. It is clear that this is not true for a graph made of only
one cycle, as any circular permutation of its edges leaves the
cycle globally invariant.

Let us say that two cycles are tangent if they share a single
common vertex or a common set of edges forming a path, as
represented in Fig. 5. We "rst observe that the two kinds of
tangent cycles have no nontrivial circular permutation of
their edges that leaves both cycles "xed. To complete the
proof, we show that any vertex a of a two-line-connected
graph which contains more than one cycle belongs to
a pair of tangent cycles and is thus "xed by the automor-
phism.
Let b be any other vertex of G (see Fig. 6). Since G is
two-line-connected, there must be at least two line-disjoint
paths from a to b (2); let us choose two such paths and form
a cycle C

1
. As G contains more than one cycle, there is at

least another vertex c of G that does not belong to the cycle
C

1
. Consider now two line-disjoint paths p

1
and p

2
joining



FIG. 7. Labeled quotient graph K(6)
2

of the NaCl structure.
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c and a, and the vertices x
1

and x
2

on p
1

and p
2
, respective-

ly, which are the "rst vertices belonging to cycle C
1

encoun-
tered when going from c to a. Both x

1
and x

2
may possibly

be confounded with a. The two extremities of the paths p
1

and p
2
, from x

1
to c and from c to x

2
, together with part of

the cycle C
1

from x
2

to x
1
, form another cycle C

2
which is

tangent to C
1
. The restriction of the automorphism A

to these cycles is therefore the identity of the group
Aut(C

1
XC

2
), which shows that vertex a is "xed by A.

On one hand, all vertices of G are consequently "xed by
A, which implies that the cocycles are "xed. We have al-
ready supposed that the cycles are "xed by A; this shows
that A is the identify of Aut(G).

On the other hand, since any automorphism of G pre-
serves the adjacency relation, both the cycle and cocycle
spaces are stable subspaces in Eq. This means that the linear
operator associated in Eq with the automorphism A of
Aut(G) and the projection operator B commute. It follows
that, for any automorphism A, the restriction of the
isometry [A, B ) g

O{
] to the cycle space Eq maps the point

lattice B )g
M
#C of the archetype to the point lattice

B ) g
M{
#C,

[A, B ) g
O{

] ) (B ) g
M
#C)"A ) (B ) g

M
#C)#B ) g

O{

"B ) (A ) g
M
#g

O{
)#A )C

"B ) (g
M{
#c)#A )C

"B ) g
M{
#C@,

where C@"c#A )C is a cycle vector of Eq and g
M{

is the
geodesic of G to which the geodesic g

M
is mapped by A, as

above. By de"nition of the automorphism, it is clear that
line lattices B ) e

i
too are mapped to line lattices of the

archetype, and thus that the restriction to the cycle space of
the isometry [A, B ) g

O{
] belongs to the space group of the

archetype. Now, we have seen that, for a graph with more
than one cycle, there is no automorphism of G, other than
the identity, which leaves all the cycles "xed. Thus, the
restrictions of the operators A to the cycle space form
a group which is isomorphic to the automorphism group
Aut(G). In that case, the space group of the projection along
the cocycle space and that of the integral embedding are
isomorphic.

We conclude that whenever the projection along the
cocycle space of the integral embedding of the minimal net
associated with a two-line-connected graph G with more
than one cycle and without loops satis"es the embedding
requirements, the factor group !/#(!) of the space group of
the projection with respect to the normal subgroup of all
translations is isomorphic to the automorphism group
Aut(G) of the quotient graph G of the net: this justi"es the
identi"cation of this projection to the archetype N[G].
COORDINATION CONSTRAINTS

The graph K(6)
2

represented in Fig. 7 corresponds to the
quotient graph of the NaCl structure. The vector labels
obtained by the program TOPOLAN (7) have been intro-
duced in the graph conjointly with the formal labeling of the
edges in E6. In accordance with the previous arguments, the
archetype N[K(6)

2
] is a well-de"ned "ve-dimensional embed-

ding. The coordination polyhedron around both kinds of
points of this framework is the regular hexatope (8), i.e., the
regular polytope with six vertices of E5. Octahedral coord-
ination can be generated through projection of the hexatope
in three-dimensional space. Using the labeling indicated in
Fig. 7, we may informally require pairing of opposite edges
to de"ne the octahedral coordination:

a#b"c#d"e#f ("0).

These equations turn out to involve the three-dimen-
sional lines obtained after projection of the hexatope. So
they are not to be applied in this form to the respective
vector labels from TOPOLAN since their terms are not
cycles of the quotient graph. However, we observe that two
independent cycles, C

1
and C

2
, can be generated from the

formal combination, as 1-chains, of the corresponding edges
of the quotient graph:

C
1
"a!c#b!d,

C
2
"a!e#b!f.

The sum of the vector labels from TOPOLAN of the
quotient graph of the NaCl structure along these cycles is
clearly null. It is thus possible to project the archetype along
the plane spanned by these two cycle vectors to derive the
NaCl structure.

The #uorite structure, the labeled quotient graph P(4)
2

of
which is shown in Fig. 8, provides another simple example.
The application of relation [3] to the only nontrivial
geodesic g"e!a shows that the archetype N[P(4)

2
] is

a well-de"ned six-dimensional embedding. The edges must,



FIG. 8. Labeled quotient graph P(4)
2

of the #uorite structure.

FIG. 9. Labeled quotient graph of the rutile structure.
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however, verify the following relations to satisfy cubic co-
ordination:

a#e"b#f"c#g"d#h ("0).

The #uorite net is accordingly obtained through projec-
tion of the archetype N[P(4)

2
] along the three-dimensional

subspace spanned by the cycle vectors C
1
, C

2
, and C

3
:

C
1
"a!b#e!f,

C
2
"b!c#f!g,

C
3
"c!d#h!g.

The rutile net with the labeled quotient graph shown in
Fig. 9 is more representative of the general phenomenon.
After the criterion for embedding based on relation [3] is
applied to the three nontrivial (and not symmetry-equi-
valent) geodesics g

1
, g

2
, and g

3
, we can check that the

archetype is a well-de"ned seven-dimensional embedding:

g
1
"a

1
!b

1
,

g
2
"a

1
!a

3
,

g
3
"a

1
!a

5
.

The coordination polyhedron around both Ti points in
E7 is a distorted hexatope. Octahedral coordination can be
obtained through projection of the archetype by pairing the
edges informally as follows:

a
1
#a

4
"a

2
#a

3
"a

5
#a

6
,

b
3
#b

5
"b

4
#b

6
"b

1
#b

2
.

Therefore, we introduce four 1-chains of the quotient graph:

p
1
"a

1
#a

4
!a

2
!a

3
,

p
2
"a

1
#a

4
!a

5
!a

6
,

p
3
"b

3
#b

5
!b

4
!b

6
,

p
4
"b

3
#b

5
!b

1
!b

2
.

It turns out that p
1

and p
3

are cycles of the graph but not
the other two. However, by applying the boundary operator
L to p

2
and p

4
, we "nd

Lp
2
"!Lp

4
"O

1
#O

2
!O

3
!O

4

which shows that the 1-chain p
2
#p

4
belongs to the cycle

space of the quotient graph. Moreover, it can be checked
that the 1-chain p

2
!p

4
belongs to the cocycle space of the

graph and was already projected onto the vector null in
deriving the archetype. Accordingly, the projection of the
archetype along the three-dimensional subspace spanned by
the three cycle vectors p

1
, p

3
, and p

2
#p

4
produces a four-

dimensional embedding with octahedral (three-dimen-
sional) coordination around the Ti points. It can be seen in
Fig. 9 that the results are in agreement with the vector
labeling of the rutile quotient graph as it is obtained from
TOPOLAN: the sum of the vector labels along p

1
, p

3
, and

p
2
#p

4
is null.

The method can now be generalized. To de"ne the projec-
ting subspace of the cycle space leading to three-dimen-
sional coordination polyhedra, one writes the 1-chains
obtained from expressing the relations between the lines
crossing at each point in the three-dimensional space. The
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cycle vectors spanning the projection subspace can be ob-
tained by looking for integer combinations of these 1-chains
that belong to the kernel of the boundary operator.

CONCLUSION

Archetypes are de"ned as m(G)-periodic embeddings of
minimal nets with maximal symmetry. Their periodicity is
equal to the cyclomatic number m(G) of their quotient
graph G and their point group; that is, the factor group of
their space group with respect to the normal subgroup of all
translations is isomorphic to the automorphism group of
this graph. The paper describes a geometrical construction
showing the existence of the archetype associated with two-
line-connected graphs with more than one cycle and with-
out loops. For a graph with p vertices and q edges, the cycle
and cocycle spaces are de"ned as complementary subspaces
in the Euclidian space Eq. An embedding of the minimal net
is constructed that is periodic along the cycle space but has
"nite extension along the cocycle space and then projected
on the cycle space. A simple criterion allows for checking the
embedding of the archetype. In general, it is necessary to
de"ne further projections along some subspace of the cycle
space to obtain a three-dimensional coordination polyhed-
ron around each point of the framework. Whether other
projections that are needed to draw real three-dimensional
structures from the archetype could eventually be given
some physical interpretation is an open question.
Finally, we observe that the symmetry point group of the
framework projected from the archetype should be isomor-
phic to the subgroup of the automorphism group of the
quotient graph that leaves the subspace de"ning the projec-
tion invariant.
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